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Abstract In this paper, we prove a unique common ran-
dom fixed point theorem in the f ramework of cone random 
metric spaces for four weakly random compatible mappings 
under strict contractive condition. Some corollaries of 
this theorem for three and two weakly random compatible 
mappings and for one random mapping are derived. Two 
examples to justify our theorem are given. Our results 
extend some previous work related to cone random metric 
spaces from the current existing literature.
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1 Introduction
Fixed point theory has the diverse applications in differ-

ent branches of mathematics, statistics, engineering, and eco-
nomics in dealing with the problems arising in approximation
theory, potential theory, game theory, theory of differential
equations, theory of integral equations, and others. Develop-
ments in the investigation on fixed points of non-expansive
mappings, contractive mappings in different spaces like met-
ric spaces, Banach spaces, Fuzzy metric spaces and cone
metric spaces have almost been saturated. The study of ran-
dom fixed point theorems was initiated by the Prague school
of probabilistic in 1950’s [9, 10, 23]. The introduction of ran-
domness leads to several new questions of measurability of
solutions, probabilistic and statistical aspects of random so-
lutions. Common random fixed point theorems are stochas-
tic generalization of classical common fixed point theorems.
Random methods have revolutionized the financial markets.
The survey article by Bharucha-Reid [8] in 1976 attracted
the attention of several mathematicians and gave wings to
the theory. The results of Špaček and Hanš in multi-valued
contractive mappings was extended by Itoh [14]. Now this
theory has become the full fledged research area and various
ideas associated with random fixed point theory are used to
give the solution of nonlinear system see [5-7, 11, 20]. Com-
mon random fixed points and random coincidence points of
a pair of compatible random operators and fixed point the-

orems for contractive random operators in Polish spaces are
obtained by Papageorgiou [15, 16] and Beg [3, 4].

In [12] Huang and Zhang generalized the concept of metric
spaces, replacing the set of real numbers by an ordered Ba-
nach space, hence they have defined the cone metric spaces.
They also described the convergence of sequences and in-
troduced the notion of completeness in cone metric spaces.
They have proved some fixed point theorems of contractive
mappings on complete cone metric space with the assump-
tion of normality of a cone. According to this concept, sev-
eral other authors [1, 13, 19, 22] studied the existence of fixed
points and common fixed points of mappings satisfying con-
tractive type condition on a normal cone metric space. In
2008, the assumption of normality in cone normal spaces is
deleted by Rezapour and Hamlbarani [19], which is an im-
portant event in developing fixed point theory in cone metric
spaces.

The aim of this paper is to extends the contractive condi-
tion (2.1) for four, three and two random mappings and estab-
lish a unique random fixed point results under this condition
in random cone metric spaces using the concept of weakly
random compatible mappings.

2 Preliminaries
2.1 Definition [21]

Let (E, τ) be a topological vector space. A subset p of E
is called a cone if the following conditions satisfied:

(c1) p is closed, nonempty and p 6= {0};
(c2) a, b ∈ R, a, b ≥ 0 and x, y ∈ p⇒ ax+ by ∈ p;
(c3) If x ∈ p and −x ∈ p⇒ x = 0.

For a given cone p ⊂ E, we define a partial ordering ≤ with
respect to p by x ≤ y iff y − x ∈ p. We shall write x < y
to indicate that x ≤ y but x 6= y, while x� y will stand for
y − x ∈ p◦, where p◦ indicate to the interior of p.

2.2 Definition [12, 24]

Let X be a nonempty set. Assume that the mapping d :
X ×X → E satisfies:

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 ⇔
x = y;
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(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) x, y, z ∈ X.

Then d is called a cone metric [12] or K−metric [24] on X
and (X, d) is called a cone metric space [12].

The concept of a cone metric space is more general than
that of a metric space, because each metric space is a cone
metric space where E = R and p = [0,+∞).

2.3 Example [12]

Let E = R2, p = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0},
X = R and d : X × X → E defined by d(x, y) =
(|x− y| , µ(|x− y|)) where µ ≥ 0 is a constant. Then (X, d)
is a cone metric space with normal cone p where K = 1.

2.4 Example [18]

Let E = l2, p = {{xn}n≥1 ∈ E2 : xn ≥ 0, for all
n}, (X, ρ) a metric space and d : X × X → E defined by
d(x, y) = {ρ(x,y)2n }n≥1. Then (X, d) is a cone metric space.

Clearly, the above examples present that the class of cone
metric spaces contains the class of metric spaces.

2.5 Definition [15]

Let (X, d) be a cone metric space. We say that {xn} is:
(i) a Cauchy sequence if for every ε in E with 0� ε, then

there is an N such that for all n,m > N, d(xn, xm)� ε;
(ii) a convergent sequence if for every ε in E with 0 � ε,

then there is an N such that for all n > N, d(xn, x) � ε for
some fixed x in X.

A cone metric space X is said to be complete if every
Cauchy sequence in X is convergent in X .

The following definitions are given in [21].

2.6 Definition (Measurable function)

Let (Ω,Σ) be a measurable space with Σ−a sigma algebra
of subsets of Ω andM be a nonempty subset of a metric space
X = (X, d). Let 2M be the family of nonempty subsets of
M and C(M) the family of all nonempty closed subsets of
M . A mapping G : Ω→ 2M is called measurable if for each
open subset U of M , G−1(U) ∈ Σ, where G−1(U) = {ω ∈
Ω : G(ω) ∩ U 6= ∅}.

2.7 Definition (Measurable selector)

A mapping ξ : Ω → M is called measurable selector of a
measurable mappings G : Ω → 2M if ξ is measurable and
ξ(ω) ∈ G(ω) for each ω ∈ Ω .

2.8 Definition (Random operator)

The mapping T : Ω×M → X is called a random operator
iff for each fixed x ∈ M, the mapping T (., x) : Ω → X is
measurable.

2.9 Definition (Continuous random mapping)

A random operator T : Ω×M → X is called continuous
random operator if for each fixed x ∈ M and ω ∈ Ω, the
mapping T (ω, .) : Ω→ X is continuous.

2.10 Definition (Random fixed point)

A measurable mappings ξ : Ω → M is a random fixed
point of a random operator T : Ω×M → X iff T (ω, ξ(ω)) =
ξ(ω) for each ω ∈ Ω.

2.11 Definition (Cone random metric space)

LetM be a nonempty set and the mapping d : Ω×M → p,
where p is a cone, ω ∈ Ω be a selector, satisfy the following
conditions:

(i) d(x(ω), y(ω)) ≥ 0 and d(x(ω), y(ω)) = 0⇔ x(ω) =
y(ω) for all x(ω), y(ω) ∈ Ω×M ,

(ii) d(x(ω), y(ω)) = d(y(ω), x(ω)) for all x, y ∈ M, ω ∈
Ω and x(ω), y(ω) ∈ Ω×M ,

(iii) d(x(ω), y(ω)) ≤ d(x(ω), z(ω)) + d(z(ω), y(ω)) for
all x, y, z ∈M and ω ∈ Ω be a selector,

(iv) for any x, y ∈ M, ω ∈ Ω, d(x(ω), y(ω)) is non-
increasing and left continuous.
Then d is called cone random metric on M and (M,d) is
called a cone random metric space.

2.12 Definition (Weakly compatible [2])

Random operators T, S : Ω × X → X (where
X be a separable Banach space) are weakly compatible
if T (ω, S(ω, ξ(ω))) = S(ω, T (ω, ξ(ω))) provided that
T (ω, ξ(ω)) = S(ω, ξ(ω)) for every ω ∈ Ω.

Recently, Rashwan and Hammad [17] proved a unique ran-
dom fixed point in a separable Hilbert space under the follow-
ing general contractive condition: Let T : Ω×X → X be a
continuous operator such that for ω ∈ Ω,

‖T (ω, x)− T (ω, y)‖ ≤ α(ω) max


‖x− y‖ ,

β(ω)
2 [‖x− T (ω, x)‖+
‖y − T (ω, y)‖],

γ(ω)
2 [‖x− T (ω, y)‖
+ ‖y − T (ω, x)‖]

 ,

(2.1)
for all x, y ∈ X where α(ω), β(ω) and γ(ω) are nonnegative
real valued random variables such that α(ω), β(ω), γ(ω) ∈
(0, 1) and α(ω).β(ω) < α(ω), α(ω).γ(ω) < α(ω).
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3 Main Results
In this section we shall prove a common random fixed point theorem under a generalized contraction condition for four

mappings satisfying some conditions in the setting of cone random metric spaces.

3.1 Theorem

Let (X, d) be a complete cone random metric space with respect to a cone p and let M be a nonempty separable
closed subset of X. Assume that S, T, P and Q be four continuous random operators defined on M such that for ω ∈ Ω,
S(ω, .), T (ω, .), P (ω, .),Q(ω, .) : Ω×M →M satisfying the following conditions:

(i) S(ω,X) ⊆ Q(ω,X) and T (ω,X) ⊆ P (ω,X),
(ii) the pairs {S, P} and {T,Q} are weakly random compatible,
(iii)

d(S(x(ω), T (y(ω))) ≤ α(ω) max


d(P (x(ω)), Q(y(ω))),

β(ω)
2 [d(P (x(ω)), S(x(ω))) + d(Q(y(ω)), T (y(ω)))],
γ(ω)
2 [d(P (x(ω)), T (y(ω))) + d(Q(y(ω)), S(x(ω)))]

 , (3.1)

for all x(ω), y(ω) ∈ Ω × X where α(ω), β(ω) and γ(ω) are nonnegative real valued random variables such that
α(ω), β(ω), γ(ω) ∈ (0, 1) and α(ω).β(ω) < α(ω), α(ω).γ(ω) < α(ω). Then the four random mappings have a unique
common random fixed point in X .

Proof. For each x◦(ω), x1(ω) ∈ Ω × X and n = 0, 1, 2, .. we choose y1(ω), y2(ω) ∈ Ω × X such that y1(ω) =
S(x◦(ω)) = Q(x1(ω)) and y2(ω) = T (x1(ω)) = P (x2(ω)). In general we construct a sequence of measurable mappings
yn(ω), xn(ω) : Ω→ X defined by {

y2n+1(ω) = S(x2n(ω)) = Q(x2n+1(ω))
y2n+2(ω) = T (x2n+1(ω)) = P (x2n+2(ω))

, (3.2)

Then from (3.1) and (3.2), we get

d(y2n+1(ω), y2n+2(ω)) = d(S(x2n(ω)), T (x2n+1(ω)))

≤ α(ω) max


d(P (x2n(ω)), Q(x2n+1(ω))),
β(ω)
2 [d(P (x2n(ω)), S(x2n(ω)))

+d(Q(x2n+1(ω)), T (x2n+1(ω)))],
γ(ω)
2 [d(P (x2n(ω)), T (x2n+1(ω)))
+d(Q(x2n+1(ω)), S(x2n(ω)))]


≤ α(ω) max


d(y2n(ω), y2n+1(ω)),

β(ω)
2 [d(y2n(ω), y2n+1(ω)) + d(y2n+1(ω), y2n+2(ω))],
γ(ω)
2 [d(y2n(ω), y2n+2(ω)) + d(y2n+1(ω), y2n+1(ω))]


≤ α(ω) max


d(y2n(ω), y2n+1(ω)),

β(ω)
2 [d(y2n(ω), y2n+1(ω)) + d(y2n+1(ω), y2n+2(ω))],
γ(ω)
2 [d(y2n(ω), y2n+1(ω)) + d(y2n+1(ω), y2n+2(ω))]

 .

For nonnegative real numbers a, b and c, if max{a, b, c} = a, then

d(y2n+1(ω), y2n+2(ω)) ≤ α(ω)d(y2n(ω), y2n+1(ω)).

If max{a, b, c} = b, it follows that

d(y2n+1(ω), y2n+2(ω)) ≤ α(ω)β(ω)

2− α(ω)β(ω)
d(y2n(ω), y2n+1(ω)) <

α(ω)

2− α(ω)
d(y2n(ω), y2n+1(ω)).

If max{a, b, c} = c, we can write

d(y2n+1(ω), y2n+2(ω)) ≤ α(ω)γ(ω)

2− α(ω)γ(ω)
d(y2n(ω), y2n+1(ω)) <

α(ω)

2− α(ω)
d(y2n(ω), y2n+1(ω)).

Putting

λ(ω) = max{α(ω),
α(ω)

2− α(ω)
}, (3.3)

it’s clearly that 0 < λ(ω) < 1.
According to (3.3), we can easy write

d(y2n+1(ω), y2n+2(ω)) ≤ λ(ω)d(y2n(ω), y2n+1(ω)).
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Similarly, we have
d(y2n(ω), y2n+1(ω)) ≤ λ(ω)d(y2n−1(ω), y2n(ω)),

hence
d(y2n+1(ω), y2n+2(ω)) ≤ λ2(ω)d(y2n−1(ω), y2n(ω)).

On continuing this process, we have

d(y2n+1(ω), y2n+2(ω)) ≤ λ2n(ω)d(y0(ω), y1(ω)).

Also, for n > m, we get

d(yn(ω), ym(ω)) ≤ d(yn(ω), yn−1(ω)) + d(yn−1(ω), yn−2(ω)) + ....+ d(ym+1(ω), ym(ω))

≤ (λn−1(ω) + λn−2(ω) + ...+ λm(ω))d(y1(ω), y◦(ω))

≤
(

λm(ω)

1− λ(ω)

)
d(y1(ω), y◦(ω)).

Let 0� ε is given. Choose a natural number N such that
(
λm(ω)
1−λ(ω)

)
d(y1(ω), y◦(ω))� ε for every m ≥ N, hence

d(yn(ω), ym(ω)) ≤
(

λm(ω)

1− λ(ω)

)
d(y1(ω), y◦(ω))� ε,

this implies that {yn(ω)} is a Cauchy sequence in Ω×X.
Since (X, d) is complete, then there exists z(ω) ∈ Ω×X such that yn(ω)→ z(ω) as n→∞. Then from (3.2), we get

lim
n→∞

S(x2n(ω)) = lim
n→∞

Q(x2n+1(ω)) = z(ω)

and lim
n→∞

T (x2n+1(ω)) = lim
n→∞

P (x2n+2(ω)) = z(ω),

therefore
lim
n→∞

S(x2n(ω)) = lim
n→∞

Q(x2n+1(ω)) = lim
n→∞

T (x2n+1(ω)) = lim
n→∞

P (x2n+2(ω)) = z(ω). (3.4)

Since T (ω,X) ⊆ P (ω,X), then there exists u(ω) ∈ Ω×X such that

z(ω) = P (u(ω)). (3.5)

From (3.1), we obtain

d(S(u(ω)), z(ω)) ≤ d(S(u(ω)), T (x2n+1(ω))) + d(T (x2n+1(ω)), z(ω))

≤ α(ω) max


d(P (u(ω)), Q(x2n+1(ω))),
β(ω)
2 [d(P (u(ω)), S(u(ω)))+

d(Q(x2n+1(ω)), T (x2n+1(ω)))],
γ(ω)
2 [d(P (u(ω)), T (x2n+1(ω)))
+d(Q(x2n+1(ω)), S(u(ω))]

+ d(T (x2n+1(ω)), z(ω)).

Taking the limit as n→∞ in above inequality and using (3.4) and (3.5), we have

d(z(ω), S(u(ω))) ≤ α(ω) max

{
0,
β(ω)

2
[d(z(ω), S(u(ω)))],

γ(ω)

2
[d(z(ω), S(u(ω)))]

}
<

α(ω)

2
d(z(ω), S(u(ω))),

or, (1 − α(ω)
2 )d(z(ω), S(u(ω))) ≤ 0, this implies that d(z(ω), S(u(ω))) ≤ 0, since 0 < 1 − α(ω)

2 < 1. Thus
−d(z(ω), S(u(ω))) ∈ p. But d(z(ω), S(u(ω))) ∈ p, therefore by Definition 2.1 (c3), we have d(z(ω), S(u(ω))) = 0
and so z(ω) = S(u(ω)).
From (3.5) we get

z(ω) = P (u(ω)) = S(u(ω)). (3.6)

Hence u(ω) is a random coincidence point of P and S.
Since the pair P and S are weakly random compatible, i.e. P (S(u(ω))) = S(P (u(ω))) this implies that

P (z(ω)) = S(z(ω)). (3.7)

Again since S(ω,X) ⊆ Q(ω,X), then there exists v(ω) ∈ Ω×X such that

z(ω) = Q(v(ω)). (3.8)
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From (3.1), (3.6) and (3.8), we have

d(z(ω), T (v(ω))) = d(S(u(ω)), T (v(ω)))

≤ α(ω) max


d(P (u(ω)), Q(v(ω))),

β(ω)
2 [d(P (u(ω)), S(u(ω))) + d(Q(v(ω)), T (v(ω)))],
γ(ω)
2 [d(P (u(ω)), T (v(ω))) + d(Q(v(ω)), S(u(ω)))]


≤ α(ω) max

{
0,
β(ω)

2
[0 + d(z(ω), T (v(ω)))],

γ(ω)

2
[d(z(ω), T (v(ω)))]

}
<

α(ω)

2
d(z(ω), T (v(ω))),

or, (1 − α(ω)
2 )d(z(ω), T (v(ω))) ≤ 0, this implies that d(z(ω), T (v(ω))) ≤ 0, since 0 < 1 − λ(ω) < 1. Thus

−d(z(ω), T (v(ω))) ∈ p. But d(z(ω), T (v(ω))) ∈ p, therefore by Definition 2.1 (c3), we have d(z(ω), T (v(ω))) = 0
and so z(ω) = T (v(ω)).
From (3.8) we get

z(ω) = Q(v(ω)) = T (v(ω)). (3.9)

Hence v(ω) is a random coincidence point of T and Q.
Since the pair T and Q are weakly random compatible, i.e. T (Q(v(ω))) = Q(T (v(ω))) this implies that

T (z(ω)) = Q(z(ω)). (3.10)

Now we show that z(ω) is a random fixed point of S, we have from (3.1) that

d(S(z(ω)), z(ω)) = d(S(z(ω)), T (v(ω)))

≤ α(ω) max


d(P (z(ω)), Q(v(ω))),

β(ω)
2 [d(P (z(ω)), S(z(ω))) + d(Q(v(ω)), T (v(ω)))],
γ(ω)
2 [d(P (z(ω)), T (v(ω))) + d(Q(v(ω)), S(z(ω)))]

 .

Using (3.7) and (3.9), we get

d(S(z(ω)), z(ω)) ≤ α(ω) max

{
d(S(z(ω)), z(ω)), 0,

γ(ω)
2 [d(S(z(ω)), z(ω)) + d(z(ω), S(z(ω)))]

}
<

α(ω)

2
d(S(ω, z(ω)), z(ω)),

it follows that d(S(z(ω)), z(ω)) = 0, i.e. S(z(ω)) = z(ω).
According to (3.7), we obtain that

P (z(ω)) = S(z(ω)) = z(ω). (3.11)

By a similar way and using (3.11), we can prove that for all ω ∈ Ω

T (z(ω)) = Q(z(ω)) = z(ω). (3.12)

The equations (3.11) and (3.12) shows that z(ω) is a common random fixed point of T, S, P and Q.
Now, we show the uniqueness. Let q(ω) 6= z(ω) be another common random fixed point of the four mappings, then from
(3.1), one can write

d(z(ω), q(ω)) = d(S(z(ω)), T (q(ω)))

≤ α(ω) max


d(P (z(ω)), Q(q(ω))),

β(ω)
2 [d(P (z(ω)), S(z(ω))) + d(Q(q(ω)), T (q(ω)))],
γ(ω)
2 [d(P (z(ω)), T (q(ω))) + d(Q(q(ω)), S(z(ω)))]


≤ α(ω) max

{
d(z(ω), q(ω)), 0,

γ(ω)

2
[d(z(ω), q(ω)) + d(q(ω), z(ω))]

}
<

α(ω)

2
d(z(ω), q(ω)) < d(z(ω), q(ω)),

a contradiction. Hence q(ω) = z(ω) and so z(ω) is a unique common random fixed point of T, S, P and Q. The proof is
completed.

If we take P = Q in above theorem we obtain the following corollary.
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3.2 Corollary

Let (X, d) be a complete cone random metric space with respect to a cone p and let M be a nonempty separable
closed subset of X. Assume that S, T and P are three continuous random operators defined on M such that for ω ∈ Ω,
S(ω, .), T (ω, .), P (ω, .) : Ω×M →M satisfying the following conditions:

(i) S(ω,X) ⊆ P (ω,X) and T (ω,X) ⊆ P (ω,X),
(ii) the pairs {S, P} and {T, P} are weakly random compatible,
(iii)

d(S(x(ω)), T (y(ω))) ≤ α(ω) max


d(P (x(ω)), P (y(ω))),

β(ω)
2 [d(P (x(ω)), S(x(ω))) + d(P (y(ω)), T (y(ω)))],
γ(ω)
2 [d(P (x(ω)), T (y(ω))) + d(P (y(ω)), S(x(ω)))]

 ,

for all x(ω), y(ω) ∈ Ω × X where α(ω), β(ω) and γ(ω) are nonnegative real valued random variables such that
α(ω), β(ω), γ(ω) ∈ (0, 1) and α(ω).β(ω) < α(ω), α(ω).γ(ω) < α(ω). Then the three random mappings have a unique
common random fixed point in X.

Putting P = Q and S = T in above theorem we get the following corollary.

3.3 Corollary

Let (X, d) be a complete cone random metric space with respect to a cone C and let M be a nonempty separable closed
subset of X. Assume that S and P are two continuous random operators defined on M such that for ω ∈ Ω, S(ω, .), P (ω, .) :
Ω×M →M satisfying the following conditions:

(i) S(ω,X) ⊆ P (ω,X),
(ii) the pairs {S, P} is weakly random compatible,
(iii)

d(S(x(ω)), S(y(ω))) ≤ α(ω) max


d(P (x(ω)), P (y(ω))),

β(ω)
2 [d(P (x(ω)), S(x(ω))) + d(P (y(ω)), S(y(ω)))],
γ(ω)
2 [d(P (x(ω)), S(y(ω))) + d(P (y(ω)), S(x(ω)))]

 ,

for all x(ω), y(ω) ∈ Ω × X where α(ω), β(ω) and γ(ω) are nonnegative real valued random variables such that
α(ω), β(ω), γ(ω) ∈ (0, 1) and α(ω).β(ω) < α(ω), α(ω).γ(ω) < α(ω). Then the two random mappings have a unique
common random fixed point in X.

Letting P = I (where I is the identity mapping defined by I(ω, x) = x(ω) for all ω ∈ Ω) in Corollary 3.3, we have

3.4 Corollary

Let (X, d) be a complete cone random metric space with respect to a cone C and let M be a nonempty separable closed
subset of X. Assume that S be a continuous random operators defined on M such that for ω ∈ Ω, S(ω, .) : Ω ×M → M
satisfying the condition

d(S(x(ω)), S(y(ω))) ≤ α(ω) max


d(x(ω), y(ω)),

β(ω)
2 [d(x(ω), S(x(ω))) + d(y(ω), S(y(ω)))],
γ(ω)
2 [d(x(ω), S(y(ω))) + d(y(ω), S(x(ω)))]

 ,

for all x(ω), y(ω) ∈ Ω × X where α(ω), β(ω) and γ(ω) are nonnegative real valued random variables such that
α(ω), β(ω), γ(ω) ∈ (0, 1) and α(ω).β(ω) < α(ω), α(ω).γ(ω) < α(ω). Then S has a unique random fixed point in X.

Finally, we present some examples to verify the requirements of Theorem 3.1 as follows.

3.5 Example

Let (Ω,Σ) denotes a measurable space and M = {1, 2, 3, 4, 5} ⊂ R with the usual metric d. Consider Ω = {1, 2, 3, 4, 5}
and let

∑
be the sigma algebra of Lebesgue’s measurable subset of Ω. Define T,Q, S, P : Ω×M →M by

S(ω, x) =
{
3 if x=1
4 otherwise and Q(ω, x) =

{
5 if x=1
4 otherwise ,

T (ω, x) =
{
1 if x=1
4 otherwise and P (ω, x) =

{
2 if x=1
4 otherwise for all ω ∈ Ω.

Taking measurable sequence xn(ω) = x(ω) = 3, it’s clearly that S(ω, x) ⊆ Q(ω, x) and T (ω, x) ⊆ P (ω, x) and for all
ω ∈ Ω, S(xn(ω)) = P (xn(ω)) = 4, S(P (xn(ω))) = P (S(xn(ω))) = 4, this implies that P and S are weakly random
compatible mappings, similarly T and Q too. To satisfy the condition (1.3), by taking x(ω) = 1 and y(ω) = 2, we can write

1 = d(S(x(ω)), T (y(ω))) ≤ α(ω) max


d(P (x(ω)), Q(y(ω))),

β(ω)
2 [d(P (x(ω)), S(x(ω))) + d(Q(y(ω)), T (y(ω)))],
γ(ω)
2 [d(P (x(ω)), T (y(ω))) + d(Q(y(ω)), S(x(ω)))]


= α(ω) max

{
2,
β(ω)

2
(1),

γ(ω)

2
(3)

}
= 2α(ω) = 1.

Hence α(ω) = 1
2 ∈ (0, 1), therefore all conditions of Theorem 3.1 are satisfied and 4 is a unique random fixed point of

S, T, P and Q.
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3.6 Example

Let (Ω,Σ) be a measurable space and M = {0, 1, 2, 3, 4} ⊂ R with the usual metric d. Consider Ω = {0, 1, 2, 3, 4} and
let
∑

be the sigma algebra of Lebesgue’s measurable subset of Ω. Define T,Q, S, P : Ω×M →M for all ω ∈ Ω, by

S(ω, x) =
{
2 if x=2
0 otherwise and Q(ω, x) =

{
4 if x=2
0 otherwise ,

T (ω, x) =
{
1 if x=2
0 otherwise and P (ω, x) =

{
3 if x=2
0 otherwise .

By taking measurable sequence xn(ω) = x(ω) = 4, then it’s obvious that S(ω, x) ⊆ Q(ω, x), T (ω, x) ⊆ P (ω, x) and for all
ω ∈ Ω, S(xn(ω)) = P (xn(ω)) = 0, S(P (xn(ω))) = P (S(xn(ω))) = 0, this gives P and S are weakly random compatible
mappings, similarly T and Q too. To justify the condition (1.3), by taking x(ω) = 2 and y(ω) = 3, it follows that

2 = d(S(x(ω)), T (y(ω))) ≤ α(ω) max


d(P (x(ω)), Q(y(ω))),

β(ω)
2 [d(P (x(ω)), S(x(ω))) + d(Q(y(ω)), T (y(ω)))],
γ(ω)
2 [d(P (x(ω)), T (y(ω))) + d(Q(y(ω)), S(x(ω)))]


= α(ω) max

{
3,
β(ω)

2
(1),

γ(ω)

2
(5)

}
= 3α(ω) = 2.

Hence α(ω) = 2
3 ∈ (0, 1), therefore all requirements of Theorem 3.1 are satisfied and 0 is a unique random fixed point of

S, T, P and Q.
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